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Abstract We study a 1-dimensional AKLT spin chain, consisting of spins S in the bulk
and §/2 at both ends. The unique ground state of this AKLT model is described by the
Valence-Bond-Solid (VBS) state. We investigate the density matrix of a contiguous block
of bulk spins in this ground state. It is shown that the density matrix is a projector onto a
subspace of dimension (S + 1)?. This subspace is described by non-zero eigenvalues and
corresponding eigenvectors of the density matrix. We prove that for large block the von
Neumann entropy coincides with Renyi entropy and is equal to In (S + 1)2.

Keywords AKLT - Density matrix - Entanglement - Valence Bond Solid

1 Introduction

The fields of statistical physics, condensed matter physics and quantum information theory
share a common interest in the study of interacting quantum many body systems. The con-
cept of entanglement in quantum mechanics has significant importance in all these areas.
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Much of the current effort is devoted to the description and quantification of the entan-
glement contained in strongly correlated quantum states. Quantum entanglement is a fun-
damental measure of how much quantum effects we can observe and use to control one
quantum system by another, and it is the primary resource in quantum computation and
quantum information processing [9, 54, 55]. Entanglement properties play an important role
in condensed matter physics, such as phase transitions [59, 60] and macroscopic properties
of solids [27, 28, 67]. Extensive research has been undertaken to investigate quantum en-
tanglement for spin chains, correlated electrons, interacting bosons as well as other models,
see [3, 5, 7, 10-14, 17, 18, 21, 29, 30, 36, 37, 40, 42, 43, 47-51, 53, 57, 58, 61, 63, 64,
66, 67, 69-77] for reviews and references. Characteristic functions of quantum entangle-
ment, such as von Neumann entropy and Renyi entropy, are obtained and discussed through
studying reduced density matrices of subsystems [19, 23, 24, 39, 41]. An area law for the
von Neumann entropy in harmonic lattice systems has been extensively studied [15, 16, 62].

Much insight in understanding entanglement of quantum systems has been obtained by
studying exactly solvable models in statistical mechanics. In this paper we study a celebrated
spin chain model introduced by 1. Affleck, T. Kennedy, E. H. Lieb and H. Tasaki (AKLT)
in 1987 [1, 2]. This model has been attracting enormous research interests since then. It can
be defined and solved in higher dimensional and arbitrary lattices [2, 44]. We consider a
1-dimensional AKLT model with spin-S§ in the bulk and spin-S/2 at both ends. The ground
state of this model is a unique pure state [6]. It is known as the Valence-Bond-Solid (VBS)
state, which plays a central role in condensed matter physics. The VBS state can be defined
in higher dimensions [2, 20, 65] and even arbitrary graphs [45, 46]. It is closely related to
Laughlin ansatz [38, 52] and fractional quantum Hall effect [6]. It enables us to understand
ground state properties of anti-ferromagnetic integer-spin chains where the finite energy gap
known as the Haldane gap exists [33, 34]. Universal quantum computation based on VBS
states [68] and an implementation of the AKLT Hamiltonian in optical lattices [26] have
also been proposed.

The density matrix of a contiguous block of bulk spins as a subsystem (we call it the
density matrix later for short) has been studied extensively in [19, 25, 41, 45, 46, 69]. It
contains information of all correlation functions [6, 40, 41]. Moreover, it has been shown
in [19, 41] that the density matrix is independent of the size of the chain and the location
of the block relative to the ends. Therefore we can take the length of the block equal to the
length of the whole chain. (i.e. we can add two ending spins S/2 directly to the block.) Then
by using the Schmidt decomposition [56], we can show that the density matrix of the block
is equivalent to the density matrix of the two ending spins. By equivalent we mean that all
non-zero eigenvalues are the same. Using this method, eigenvalues of the density matrix as
well as entanglement entropies were obtained [19, 25, 41] without knowing the eigenvectors
explicitly.

However, eigenvectors of the density matrix have their own importance. They can be
used to study the structure and symmetries of the density matrix explicitly both for finite
block and in large block limit. The construction of eigenvectors also provides us with a pos-
sible method to diagonalize the density matrix directly. As to be shown in following sections
(see Sects. 2.3, 2.4, 4.3), the eigenvectors also have their own physical meaning as degen-
erate zero-energy ground states. In the context of the Haldane gap, these degenerate states
are known as edge states and have been observed in the S = 1 spin chain compound [32].
Furthermore, eigenvectors become indispensable in quantum computing algorithms, partic-
ularly in discussing quantum measurements.

In this paper, we consider AKLT models with two different boundary conditions. Let’s
first take spin S = 1 for example. The system consists of a linear chain of N spin-1’s in the
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bulk, and two spin-1/2’s on the boundaries. We shall denote by S; the vector spin operator
atsite j (j=0,1,..., N+ 1). The Hamiltonian is

N-1
1 1 2 2
Huniq = E /Z:; (S, . Sj+1 + g (S, . S_/‘+l) + 5) + 70,1 + TN N+1- (1
The boundary terms 7 describe interactions of a spin-1/2 and a spin-1. Each term is a
projector onto a state with spin 3/2:

2 2
”O,IE§(1+SO'SI)7 7TN.N+IE§(1+SN'SN+1)- 2)

The Hamiltonian (1) has a unique ground state (VBS state), thus we shall call it the unique
Hamiltonian. Alternatively, if we consider spin-1’s at every site including the boundaries,
then the Hamiltonian takes the form

N-1

1 1 2
Hdeg=52<sj"S_,'+1+§(Sj~Sj+1)2+§>. 3)

j=1

The ground states of this Hamiltonian are 4-fold degenerate. We shall call (3) the degenerate
Hamiltonian.
For generic spin-S, the unique Hamiltonian is

N—1 28
Hynig = Z Z Cy P}y +mo1 + 7NNt “

j=1 J=5+1
where the projector P/J/ +1 projects the bond spin J; ;11 =S; + S;; onto the subspace
with total spin J (J =S+ 1,...,2S). The boundary terms describe interactions between a
spin-S/2 and a spin-S:

35/2 35/2
moa= Y. DR, w1 = Y, DiPy )
J=S/24+1 J=5/241

Both coefficients C; and D, can take arbitrary positive values. Correspondingly, the degen-
erate Hamiltonian with spin-S$ at every site takes the form

N—1 28
Hieg= D CiPji- ©)
=1 J=S+1

The degeneracy of the ground states is (S 4 1)>. This will be important in description of
eigenvectors of the density matrix (see Sects. 2.4 and 3).

Consider the AKLT spin chain system with the unique Hamiltonian (4) in the VBS
ground state. The density matrix p of the whole chain is a projector onto the unique VBS
ground state (see (10)). If we pick up a block of L contiguous bulk spins as a subsystem
and trace out all degrees of freedom outside the block, then we obtain the density matrix p;
of the subsystem (see (14)). Because of entanglement with spins outside the block, p; will
no longer be a pure state density matrix as p is in general. We shall prove that the density
matrix p, is a projector onto a (S + 1)2-dimensional subspace of the complete Hilbert space
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associated with the block (see Sects. 2.4 and 3). The degenerate Hamiltonian (6) becomes
essential in description of this subspace. When the degenerate Hamiltonian has its size N
equal to that of the block L, it is referred to as the block Hamiltonian and denoted by H,
which is defined by (21). It turns out that the block Hamiltonian H,, (i.e. the degenerate
Hamiltonian Hy,, in (6) with N = L) defines the density matrix p, completely in the large
block limit L — oo. The zero-energy ground states of the block Hamiltonian H,, span the
subspace that the density matrix p,; projects onto. So that p, can be represented as the
zero-temperature limit of the canonical ensemble density matrix defined by Hj:

e_ﬁHb
= lim ———, L — oo, 7
oL e Tr[e P @
where
L-1 2§
Hy= Hyeg(With N=L)=Y" " C,;P{,,,. (8)
j=1J=S8+1

In the zero-temperature limit, contributions from excited states of H, all vanish and the right
hand side of (7) turns into a projector onto the ground states of the block Hamiltonian.

As main subjects of the paper, we will construct eigenvectors and derive expressions for
corresponding eigenvalues of the density matrix. We will show that the density matrix is a
projector. The paper is divided into four parts:

1. We calculate the density matrix, prove a theorem on eigenvectors and express eigenvalues
in two different forms using the Schwinger representation (Sect. 2).

2. We investigate the structure of the density matrix in the large block limit. As characteris-
tic functions of quantum entanglement, the von Neumann entropy and the Renyi entropy
are obtained in the limit (Sect. 3).

3. We study the density matrix using a different representation (a pure algebraic method)
for spin S =1 (Sect. 4).

4. An alternative proof of the theorem on eigenvectors is given as we take a different ap-
proach (Sect. 5).

2 Density Matrix for Generic Spin-S
2.1 Ground State of the Unique Hamiltonian

We start with the ground state of the unique Hamiltonian (4). It is given in the Schwinger
representation by the VBS state [6]

N
vBs) =[] <aTbT —blal )S |vac), ©)

J7J+l Ji+
j=0

where a, b" are bosonic creation operators and |vac) is destroyed by any of the an-
nihilation operators a, b. These operators satisty [a,-,a;] = [bi,b;] = §;; with all other
commutators vanishing. The spin operators are represented as Sj+ = a;b i S, = b;a_,-,
Si= (aj.a_,- - b;b 7)/2. To reproduce the dimension of the spin-S Hilbert space at each

site, an additional constraint on the total boson occupation number is required, namely
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(a;a i+ b;b 7)/2 = S. More details and properties of the VBS state in the Schwinger repre-
sentation can be found in [6, 8, 45, 46]. The pure state density matrix of the VBS ground
state (9) is

_ |VBS)(VBS|
P = VBS|VBS) (10)

For normalization (VBS|VBS) of the VBS state, see Appendix A.
2.2 Density Matrix of a Block of Bulk Spins

We take a block of L contiguous bulk spins as a subsystem. In order to calculate the density
matrix of the block, it is convenient to introduce a spin coherent state representation. We
introduce spinor coordinates

0 _
(u,u)z<cos§e’%,sin§e*’%>, 0<6<m, 0<¢<2n. (1)

Then for a point Q2= (sinf cos ¢, sinf sin ¢, cos f) on the unit sphere, the spin-S coherent
state is defined as

R (ua® + vbH)2S
12) = —F—==—

V25!
Here we have fixed the overall phase (a U(1) gauge degree of freedom) since it has no

physical content. Note that (12) is covariant under SU(2) transforms (see Sect. 3). The set
of coherent states is complete (but not orthogonal) such that [4, 25]

|vac). 12)

2S+1
4

S
[agi@@i= 3 is.ms.ml= s (13)

m=—5

where |S, m) denote the eigenstate of 8% and S., and I»s, is the identity of the (25 + 1)-
dimensional Hilbert space for spin-S. The completeness relation (13) can be used in taking
trace of an arbitrary operator.

Now we calculate the density matrix of a block of L contiguous bulk spins in the VBS
state (9). By definition, this is achieved by taking the pure state density matrix (10) and
tracing out all spin degrees of freedom outside the block:

pr=Tron k-rksr..vni [p]. 1<k k+L—1<N. (14)

Here the block of length L starts from site k and ends at site k + L — 1. p; is no longer a
pure state density matrix because of entanglement of the block with the environment (sites
outside the block of the spin chain). It was shown in Sect. 2 of [40] that entries of the density
matrix are multi-point correlation functions in the ground state. The original proof was for
spin § = 1/2. This statement is generalized to generic spin-S in Appendix D.

Using the coherent state representation (12) and completeness relation (13), p; can be
written as [41]
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JUT o T8 a2 TS T [5(1 = 25 - 2,001 B[ VBS. ) (VBS, | B

P = ! A A A

[(ZS+1) ]L f[l_[N+l d'Qj]nj‘V:O[%(l _ -Qj '9_/'+1)]S
15)

Here the boundary operator B and block VBS state [VBS,) are defined as
B = (ug—1bx — ve—1a%)® (@i L1V — brrr 1wk 1)’ 16)

k+L—2
vBs.) = [] ( ibl,, —bla jH) |vac), (17)
Jj=k

respectively. Note that both B and |[VBS.) are SU (2) covariant (see Sect. 3). The expres-
sion (15) can be simplified. We can perform the integrals over (}j (j=0,1,....k—2,k+
L+1,...,N, N+1)inthe numerator and all integrals in the denominator (see Appendix A).
After integrating over these variables, the density matrix p; turns out to be independent of
both the starting site k and the total length L of the block. This property has been proved
in [19] for spin S =1 (using a different representation, namely the maximally entangled
states, see Sect. 4) and generalized in [41] for generic spin-S. Therefore, we can choose
k =1 and the density matrix takes the form

L
pL:[(Ziill)!] (54:)? dS20ds2,.1BT|VBS,)(VBS,|B (18)
with
B A S B B S
B = (ugb} - vial) (alvi —bluin) (19)
L-1 s
VBS.) =TT (alb]. = bjal.,) Ivac). (20)

Jj=1

The last two integral of (18) can be performed, but we keep its present form for later use.
2.3 Ground States of the Block Hamiltonian

In order to describe the eigenvectors of the density matrix (18), we first study the zero-
energy ground states of the degenerate Hamiltonian defined in (6). We choose the length
of the spin chain equal to that of the block, i.e. N = L, then the degenerate Hamiltonian is
called the block Hamiltonian and reads

L—1
Hy= Hyeg(With N=L)=Y" " C,;P{,,,. 1)
j=1J=S8+1

Now we define a set of S + 1 operators covariant under SU (2)
. L \S—T . N
A} = (ua] +vb1') (alb] —bia}) " (uaj +vb})". 0=J<s. (22)

These operators act on the direct product of Hilbert spaces of spins at site 1 and site L. Then
the set of ground states of (21) can be chosen as

IG; J,2)= A} |VBS,), J=0,...,S. (23)
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Any state |G; J, £2) of this set for fixed J and £2 is a zero-energy ground state of (21). To
prove this we need only to verify: (i) the total power of a] and b} is 25, so that we have
spin-S at the first site; (i) —S < Jf',z = §{ + 55 < S by a binomial expansion, so that the
maximum value of the bond spin J; » is S (from SU (2) invariance, see [6]). These properties
are true for any other site j and bond (j, j + 1), respectively. Therefore, the state |G; J, 2)
defined in (23) has spin-S at each site and no projection onto the J; ;1 > S subspace for
any bond.

The set of states {|G; J, £2)} depend on a discrete parameter J as well as a continuous
unit vector £2. States with the same J value are not orthogonal. The rank of a set of states
with the same J value is 2J + 1, which can be obtained from the completeness relation (121)
(see Appendix B and [35]). Thus the total number of linearly independent states of the set
{1G; J, f))} is Z§=0(2J + 1) = (S + 1)?, which is exactly the degeneracy of the ground
states of (21). So that {|G; J, Q)} forms a complete set of zero-energy ground states.

We also introduce an orthogonal basis in description of the degenerate zero-energy
ground states. It is shown in Appendix B and [35] that A'; (22) can be expanded in terms of
spin creation operators lI/}'M (M =—J,...,J) defined in (119). Operator W}M acts on the
direct product of two Hilbert spaces of spins at site 1 and site L (120) and can be expressed
in terms of bosonic creation operators in the Schwinger representation (115). If we define a
set of degenerate VBS states {|{VBS, (J, M))} such that

IVBS,(J, M)) =W}, IVBS,), J=0,....S, M=—J,...,J, (24)

then these (S + 1)? states (24) are not only linearly independent but also mutually orthogonal
(Appendix C). Furthermore, any ground state |G; J, S}) can be written as a linear superpo-
sition over these degenerate VBS states, and vice versa (see (122) of Appendix B). The
set {|[VBS.(J, M))} differs from {|G; J, Q)} by a change of basis, so that it also forms a
complete set of zero-energy ground states.

2.4 Eigenvectors of the Density Matrix

Eigenvalues of the density matrix (18) are derived for spin-1 in [19] and for spin-S in [41].
Because the density matrix is independent of both the total length of the spin chain and the
starting site of the block, we can add boundary spins directly to the ends of the block. It was
shown in [19, 41] by a Schmidt decomposition (see [56]) that non-zero eigenvalues of the
density matrix (18) are equal to those of the density matrix of the two boundary spins. All
other eigenvalues of the density matrix (18) are zero. This fact reveals the structure of the
density matrix as a projector onto a subspace of dimension (S + 1)2.

Now we propose a theorem on the eigenvectors of the density matrix given by (18). The
explicit construction of eigenvectors allows us to diagonalize the density matrix directly.
The set of eigenvectors also spans the subspace that the density matrix projects onto.

Theorem 1 Eigenvectors of the density matrix p; (18) with non-zero eigenvalues are given
by the set {|G; J, §2)} (23), or, equivalently, by the set {|VBSL(J, M))} (24). i.e. they are
zero-energy ground states of the block Hamiltonian Hj, (21).

We prove the theorem by showing that the density matrix p; (18) can be written as
a projector in diagonal form onto the orthogonal degenerate VBS states {|VBS, (J, M))}

introduced in (24). An alternative proof taking a different approach is given in Sect. 5.
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First, it is realized from the definition of spinor coordinates (11) that if we change vari-
ables (u,v) to (iv*, —iu*), then the unit vector £2 is inverted about the origin to —£2. So
that we have [41]

Wb’ —v*a")S|vac) = iSV/S! |-2), (25)

where |—f2) means a spin-S/2 coherent state for a point opposite to §2 on the unit sphere.
Therefore, taking expressions of the boundary operator BT (19) and the block VBS state
[VBS.) (20), we have

BY|VBS,) (26)

L_
:S!H< jbj+l bj ]I+1) |~$20)1 ® [vac), ® - ® [vac) 1 ® |~2141)1.-
=1

Consequently the density matrix p, (18) can be re-written as

S+1 1 SISLTT o e S
Pr= [m] S+1 Il (“jbj+1 - bjaj+1)
j=1

L-1
s
X I;lﬁl ® |vac),(vac| ® - - - ® |vac),_;(vac| ® Is+1 (aﬂ,-ij - bjajH) , (27

Jj=l1

where [ ; 4+ and [ s( +1 are (S + 1)-dimensional identities associated with site 1 and site L,
respectively. In obtaining (27), we have changed integral variables from 2, -QL+1 to —£20,
—f}ul and performed these two integrals using the completeness relation (13). Next we
notice that (see Appendix B)

s J
I @IS =" 3" 11 M), (). M
J=0 M=—J
s J
=Z Z JMlvac (vac| ® |vac) (vac|¥;y. (28)

J=0 M=—

As a result, combining (27) and (28), recalling definitions of |VBS;) (20) and
[VBS, (J, M)) (24), the density matrix p, takes the following final form

N

s+1 7% sis! -
pL=[ _} _Z Z W), [VBS.)(VBSL|W)
QS+ D] S+14 &,

S+1 78 SIS o o
= [(257:1)'} S—HZ > IVBSL(J, M))(VBSL(J. M)|. (29)

J=0M=—J

The set of degenerate VBS states {|VBS.(J, M))} with J =0,...,Sand M =—J,...,J
forms an orthogonal basis (see Appendix C). These (S + 1) states also forms a complete set
of zero-energy ground states of the block Hamiltonian (21) (see Sect. 2.3 and Appendix B).
So that in expression (29) we have put the density matrix as a projector in diagonal form
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over an orthogonal basis. Each degenerate VBS state [VBS, (J, M)) is an eigenvector of the
density matrix, so as any of the state |G; J, £2) (because of the degeneracy of correspond-
ing eigenvalues of the density matrix, see Sect. 2.5 and Sect. 2.6). Thus we have proved
Theorem 1.

2.5 Eigenvalues of the Density Matrix (Recurrence Formula)

Having constructed eigenvectors, we need to specify the corresponding eigenvalues. An
explicit expression of eigenvalues is obtained in Sect. 2.6. In this subsection we express
eigenvalues through a conjectured recurrence formula as in [25] and [41]. Let’s apply the
density matrix p; (18) to the state |G; J, Q) (23) and get

S+1 ]Ls+1

puIG: . 2) = [(2S+ D! @n)2

fondsz+1B*|VBSL><VBSL|BA}|VBSL>. (30)

Using the coherent state representation (12) and completeness relation (13), the factor
(VBS, |BA'; [VBS,) in (30) can be re-written as

(VBS.|BA’|VBS,)

s+t AT A s
= / [Tag2; | TT|50 -2 20| @ovi = voun)®
4r 2
* )/ * %k s % \S—J * w\J S
x(uul—i—vvl) (ule—vluL) (uu} +vv})” upvpsr —veups)® . (31

The factor [%(1 — [}j Q2 j+1)]s under the integral of (31) can be expanded in terms of
Legendre polynomials and further in terms of spherical harmonics as [25, 41]

1 N B 1< A
|:5(1 - -Qj : -Qj+1)i| = S——l-l 2(21 + Dad, S)Pl(gj ' -Qj+1)
1=0

4 S ! A A
= 511 DA Y Vi (2)Y), (241) (32)
=0

m=—I|
with coefficients A(/, S) given by

(=DISIS + D!
(S=DUS+I+ D!

A, 8) = (33)

Using the expansion (32) and orthogonality of spherical harmonics, the integrals over (}j
with j =2,..., L —1in (31) can be performed. The result is

. S+1[@S+1)!
(VBS.|BA}|VBS,) = + [Q

L S
L—1
=G| st ] ;awm (€, 8)

X /d.él d2, P2, - £21) (uovy — vouy)® (uu]k + va)J

S—J J s
X (ulvz — ) u’Z) (uu*L + vvi) (upvpy —vpupi1)” . (34)
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We plug the expression (34) into (30). Using transformation properties under SU(2) and
binomial expansion (see Sect. 3), the integral over £2, yields that

/dﬂo (u;’ij—vO ) (uovy — vouy)’ = (ula;f—i-vlbf)s. (35)

5/
S+1
Similarly we can perform the integral over 2141. As a result, the following expression is

obtained from (30):

N

2) = 20 + DALL1, YK (2)|VBS,). 36
(471)2;( + DA S)K] (2)[VBS,) (36)

The operator K ,*(fz) involved in (36) is defined as
TrHO) — A A ¥ ¥ $ * s\ [k x x x\S—J
K/ (£2) = /dQl ds2y (u1a| + vlb]) (uu} +vv})” (ufvy — viu})
A\ ~ A
X (uu"L‘ + vvz)J (uLaz + va'L) Pi(82) - 21). (37)

It is expressed as an integral depending on the order / of the Legendre polynomial Pi(£21 x
S}L). K ,"'(SAZ) can be calculated from the lowest few orders (see Sect. 3 for example). It
becomes increasingly difficult to perform the integral as order / increases. Based on the
eigenvalues of the density matrix obtained in [19, 41], we make a conjecture on the explicit
form of the operator K| ;(SAZ) for generic order /:

Conjecture 1

2
KT(Q):<4—” I lJ(J—H)—lS(lS—{-l Al (38)
! S+1 2 27\2 a

Here the polynomial /; (x) satisfy the recurrence relation

20 +1 4x I (S—I14+1\*
1, = 1, — ) I_ 39
1+1(x) (S+l+2)2(l+1 ) 1 (x) — Z+I(S+l+2> 1-1(x) (39)

with [y =1and I, = 3 +1)2

Note that it is important that K ,#(Q) o' A; defined in (22) and /;(x) has the same order
as the Legendre polynomial P;(x). The recurrence relation (39) was proposed in [25] and
used in [41] to obtain the eigenvalues of the density matrix. (The original definition of 7;(x)
differed from our definition in (39) by a factor of %.) Conjecture 1 (38) is an alterna-
tive form of Theorem 1, which also gives eigenvalues through the recurrence relation (39).
Indeed, expressions (36), altogether with (38) and (39) yields that

0.1G; J, 2)

20+ DAL, 81, 1JJ 1 ls 1S 1))1G; J, £2).(40
(SH)ZZ( + DA ),<5(+)—5 (5 +))| : J, 2).(40)
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Non-zero eigenvalues (J =0, 1, ..., §) are seen from (40) as

R - 1 1 (1
A(J):m;(ﬂ—i-l)k (l,S)Il<§J(J+1)—§S<§S+1>>. (41

Since all other eigenvalues of the density matrix are vanishing, then we conclude again
that the density matrix p; (18) is a projector onto a subspace of dimension (S + 1)2. This
subspace is spanned by the set of vectors {|G; J, Q)} (23). (The rank of the set is equal to
(S + 1)2.) Furthermore, we observe from (41) that non-zero eigenvalues A(J) depend only
on J, not on £2. Therefore, {IG; J, (})} with fixed J value spans a degenerate subspace with
the same eigenvalue.

2.6 Eigenvalues of the Density Matrix (Normalization of Degenerate VBS States)

Based on the diagonalized form (29), eigenvalues of the density matrix p; can be derived
from the normalization of degenerate VBS states. We obtain an explicit expression for eigen-
values in terms of Wigner 3 j-symbols in this subsection.

First, the following property is important: Normalization of the degenerate VBS state
[VBS, (J, M)) depends only on J and is independent of M. With the introduction of total
spin operators of the block S, S5, and S2, (see Appendix C), we prove the statement as
follows:

(VBS, (J, M + 1)[VBS,(J, M £ 1))
1
UM EM 1)
1
TUFEMUTEM D)
— (VBS, (J, M)[VBS,(J, M)). 42)

(VBSL(J, M)|S§0:lS0t|VBSL(J M))

(VBSL(J, M)[(Siy — (S5)” F S IVBSL(J, M)

Here we have used the fact that [VBS,(J, M)) is the eigenstate of S2, and Sf;; with eigen-
values J(J + 1) and M, respectively (see Appendix C).

It is also realized that normahzatlon of [VBS.(J, M)) can be calculated from integrating
the inner product of |G; J, §2) with itself over the unit vector §2 such that

S+J+DHIS =N

—/d.Q (G; J,2|G; J, 2) = YR (VBS.(J, M)|VBS.(J, M)).

(43)
In obtaining this relation (43) we have used expansion (122) and orthogonality (116) in
Appendix B.

Let’s consider the integral involved in (43). Using coherent state representation (12) and
completeness relation (13) as before, we obtain

i/d.é(G; J,2|G; J, 2)
47
1 Tes+n1t CHEN et . S
4n[( = )] / 9/ []a%2; ]‘[[ (1 —£2; ,-m]
j=1 j=1
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J

1 1 v o
X[E(l—QI'QL)} |:§(1+91'9)j| |:§(]+Q'QL)i|

(44)

Now we expand [% 1- (},- 2 j)]J in terms of spherical harmonics as in (32), then integrate

over £2 and from S}g to SAZL,I, the right hand side of (44) is equal to

4 ((2S + HHE
S+DENS—T+D(J +1)2

s S-J J I

XZZZ > Z Z/dlefdQLAL Yy, L, S — )

=01;=0 =0 m=—1y mp=—If m=—I|

X A2 ) Yiy g (20 Y1y (20 Y1 (20Y]F . (R0, (20)Y], (820).

Here we apply the following useful formula:
/d[}Yll,nl] ([})YZL,mL([})Yl,m((})

QL+ DRI +DQI+1) Ip 1 L 11
4 0 0 0 ’

mp; m
where ( ol 1

myp myp m
in (45) and obtain

(28 + DY*
S+DLUS—J+ DI +1)2

S S—-J J I

XZZZ > Z Z(le+1)(2h+1)<2z+1)

=01;,=0 =0 m|=—I; mp=—I] m=—I

Lo, IN /L 1, 1\’
x AENAL AL, S — DA, T) .
0O 0 O m, mp m

The symbols obey the following orthogonality relation:

ll lL l ll lL l/
Z @+ = 811 S’ -
my,mp my mp m m; mp m’

Using this orthogonality (48), we can recast expression (47) as

(@S +DHHt
S+DEYS T+ DI +1)2
s S=-J J

x Z Z Z(zz1 + D)@l + DRI+ DAY, S)

1,=01;=0 =0

2
Lol
x AL, S — DA, J) 0 .

0 0

@ Springer

(45)

(46)

) is the Wigner 3 j-symbol. Using formula (46), we carry out the integrals

47

(43)

(49)
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The explicit value of (I(; [é (l)) is given by

Lol _(_l)g\/(Zg—21|)!(2g—21L)!(2g—21)! g!
00 0) g+ 1! (g — g —INg—D

(50)

if [y + 1, +1=2g (g € N), otherwise zero. Finally, normalization of degenerate VBS states
|[VBS, (J, M)) is obtained as

(VBSL(J, M)|VBS.(J, M))

B (2J + DS+ DHY*
CSHDEISHI DS - T+ DI+ DI 4 D!

S S-J J
x Z Z Z(le + D@2l +1DQRI+1)
11=01;=0 =0
A
x ALV, AL, S — DAL D) . (51)
0 0 0

Combining results of (29) and (51), we arrive at the following theorem on eigenvalues:

Theorem 2 FEigenvalues A(J) (J =0, ..., S) of the density matrix are independent of Q
and/or M in defining eigenvectors (see (23) and (24)). An explicit expression is given by the
following triple sum

S+1 7 sis
m} S—_H(VBSL(J,M)WBSL(],M))

. 2J + D!SIS!
S SHTHDAS =T+ DI+ DI+ D)

S S-J J

x Z Z Z(zz, + D@l + DI+ DA, 8)

1,=01;=0 =0

AJ) = |:

(11 I 1)2
x AL, S — DA, J) . (52)
0 0 0

Although not straightforward to verify, this expression (52) should be consistent with
eigenvalues given through the recurrence expression (41). We could check the case when
S =1 that

(VBS.(0,0)|VBS.(0,0)) = %(3L +3(=1)5),

1
(VBSL(1, M)[VBS (1, M)) = E(3L — (=", (53)
where we have used the selection rule of the Wigner 3 j-symbol. From (114) we find that

(VBS|VBS) =2 - 3%, so that we obtain the correct eigenvalues of the density matrix from
the above result (52) (see Sect. 4 for comparison).
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We shall emphasize at this point that given eigenvalues (52), both von Neumann entropy

S
Son=-Tr[p,Inp,]==> QI +1)AU)InAW) (54)
J=0
and Renyi entropy
Sg= : In{Tr[p}]} = L XS:(zj +1)A*(J)) (55)
l —« L l—« =

can be expressed directly.

3 Density Matrix in the Large Block Limit

In the limit L — oo, that is when the size of the block becomes large, we learned from [19,
31, 41] that the von Neumann entropy reaches the saturated value S, y =1In (S + 1)2. Then
the density matrix (denoted by p, in the limit) can only take the form (see [56] for a general
proof)

1

= ml(s+l)2 @@Oo, (56)

Poo

where 5y is the identity of dimension (S + 1)? and @, is an infinite dimensional matrix
with only zero entries. In this section, we give a proof of Conjecture 1 (38) in the limiting
case as L — o0o. Then we shall verify the structure of the density matrix (56) explicitly.

We first realize from (33) that as L — oo, AL~1(1, §) — d1,0. Therefore only the first term
with / = 0 is left in (36). So that we need only to calculate Kg (.Q):

A A . NS
Ky (82) = /d.Ql as2; (ula]' + vlbl'> (uu’f + vvi‘)l
_ . s
x (ufv] — v]“u*L‘)S ! (uu} + va)J <uLai + va;) . (57)
It is useful to know transformation properties of the integrand in (57) under SU(2).
The pair of variables (u, v) defined in (11) and bosonic annihilation operators (a, b) in the

Schwinger representation both transform as spinors under SU(2). That is to say, if we take
an arbitrary element D € SU(2) (2 x 2 matrix), then (u, v), etc. transform according to

()of)

On the other hand, (u*, v*), (—v,u), (af, b") and (—b, a) transform conjugately to (u, v).
That is to say (u*, v*), etc. transform according to

u* u*
( ) — D* < ) . 59)
v* v*
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The combinations appeared in Kg (.Q) 67

*_

wal +vibl,  wuwt +ovl,  wivi —viul, wui +ovi, upa) +ub) (60)

as well as A; in (22), boundary operator B in (19), etc. all transform covariantly under
SU(2), i.e. those expressions keep their form in the new (transformed) coordinates.

These transformation properties (58), (59) can be used to simplify the Kg ([}) integral.
We first make a SU (2) transform

u; v ur 1
DuL=< t L), DML< )=( ) (61)
—Vr ur v 0

under the part of the integral (57) over $21. Then this part of integral becomes
5 § Y\« o (ST
ds2, (ulal + vlbl) (uul + vvl) (—vl) . (62)
This can be calculated using binomial expansion and the result is

s4j:1 (ua'l" n vb'{')J (—b'{')s_j. 63)

Then we make an inverse transform in (63) using D, ! = D]

ur’

consequently (57) is put in a
form with a single integral over 2 remaining:

~ 4 J
K@ =5 (ual +vo})

A /s N J : S
X /d.QL (al'vi — biu?) (uuz + vvz) (uLaL + va‘L> . (64)
Now we make another SU (2) transform using
u*t  v* u 1
D, = ; D, = ; (65)
—v u v 0
then the remaining integral over £2, in (64) becomes
. 57 S
/d.QL (afv; —bluz)" ;)" (weal +vib}) - (66)
Using again binomial expansion, this integral (66) yields
477 - N
T (albL - blaL) <aL) . (67)

At last we make an inverse transform in (67) using D;' = DZ and plug the result into (64),
the final form is

$ oA 4 \* .
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This expression is consistent with Conjecture 1 (38), which also proves that {|G; J, Q)} isa
set of eigenvectors of the density matrix as L — oco. Let’s denote the density matrix in the
limit by p,. Then (68) leads to the result (see (40))

~ 1 A
G; J,2)=——IG; J, £2). 69
Pocl )= 55! ) (69)

We find from (69) that the limiting eigenvalue Ao, = m is independent of J. Any

vector of the (S 4 1)?-dimensional subspace spanned by the set {|G; J, (})} is an eigenvector
of p., with the same eigenvalue m Therefore p, acts on this subspace as (proportional
to) the identity /(5. ;y2. So that we have proved explicitly that the density matrix takes the
form (56) in the large block limit. In addition, we also derive from the eigenvalues that the
von Neumann entropy S, y = — ZiZO(ZJ + 1) A In A coincides with the Renyi entropy
Sgr = ﬁ 1n{2§:0(21 + 1) A%} and is equal to the saturated value In(S + 1)2.

4 Density Matrix for Spin S =1

In the case of spin S = 1, we could prove Conjecture 1 (38) for finite block by calculat-
ing K 17 (fZ) defined in (37) using similar methods as been used in Sect. 3. However, in this
special case S = 1, we have an alternative algebraic proof. We shall use a different represen-
tation in which the eigenvectors of the density matrix form an orthogonal basis (maximally
entangled states). The formulation is base on [19].

4.1 Ground State of the Unique Hamiltonian

The unique Hamiltonian is given by (1). In order to represent the unique ground state, we
first introduce the following notation for convenience [19]:

o) = (=)' 1 ® 6,|0), «=0,1,2,3 (70)

where 0y = I (2-dimensional identity), o,= 23 are Pauli matrices and |0) = :—é(| M)y —
|1 1)) is the singlet state (antisymmetric projection) of two spin-1/2’s. The four states (70)
(maximally entangled states) form an orthonormal basis of the Hilbert space of two spin-1/2
operators.

The spin-1 state at each site is represented by a symmetric projection of two spin-1/2
states given by (70) for « = 1, 2, 3. Let’s take the jth site for example. The two spin-1/2’s
are labeled by (j, j) (from left to right, respectively). Then the spin-1 states are prepared
by projecting these two spin-1/2’s (4-dimensional space) onto a symmetric 3-dimensional
subspace spanned by

1
IU,-;ZE(IT),‘IT);— )17,

I2>j_;=%<|¢>.f|¢>;+|¢>_,~|¢>,—->, 1)
-1
3),7= (17 + 1,11
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Thus the two ending spin-1/2’s are labeled as site 0 and N + 1. The unique ground state in
this representation is [1, 2, 19]

N
IG) = (® ij) 106110012+~ 10) yv41- (72)
j=1

Here P;; projects two spin-1/2 states onto a symmetric subspace, which describes spin-1.
Using basis (70), we have

3

Pj;=Y"la);jal. (73)

a=1

A crucial step (see [19]) is that the ground state (72) can be expressed in a different form
using

13
10045100 5c = —- D10} [11 ® (@2)c] 10)4c (74)
a=0

for arbitrary labels A, B and C. Repeatedly using relation (74), the product of |0)’s in (72)
can be rewritten as

|0>(’)1|0>Tz"'|0>1\71v+1 (75)
—1\¥ 3
= <7> Z lort) -+ oy ) [ 15 ® (T * + Oy N1 ]10) Gy 41-

Then by projecting onto symmetric subspace spanned by |« = 1, 2, 3), the ground state (72)
takes the form [22, 69]

1 3
G) =555 2 1o lew) I ® @y -+ 01 ]0)gys1- (76)

a,.ay=1

Note that this ground state (76) is normalized and we have re-written the overall phase for it
has no physical content.

4.2 Density Matrix of a Block of Bulk Spins

Given the ground state in the form (76), we obtain the density matrix of a block of L con-
tiguous spins starting at site k by tracing out spin degrees of freedom outside the block using
basis (70):

PL=Tr5, ki ktr....nn+1 [GHGI a7

The result is independent of the starting site k and the total length N (see [19]). We choose
k =1, N = L so that the density matrix reads [19]

1 3
pr=r D lon)ei]-+ o) (|01 @ (@00 ) ® (0 - +-0u)I0). (T8)

a,a’=1
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4.3 Ground States of the Block Hamiltonian

The degenerate Hamiltonian is given by (3). We choose the length of the spin chain to be
equal to that of the block, then the block Hamiltonian Hj, = Hy., with N = L reads

1Ll

2
Hb=22<s Sjt1+ 3 (S sm) §>. (79)

Jj=1

Any linear combination of states of the following form

IG: x1. x7) (@ >|x”|012|0> 100z lxe)z (80)

is a ground state of the block Hamiltonian (79). In (80) we have made notation | x) = |1 or |,)
represents the two spin-1/2 states and P;; is defined in (73). Let’s make a particular linear
combination of these |G; xi, xj) states using (70) and write the four (@ =0, 1, 2, 3) linearly
independent ground states of the block Hamiltonian (79) as follows

IG; @) <® >|O‘ 12110)1210)33 - - - [0) 7 =7, - (81)

Now we go through the same steps as from (72) to (76), the resultant form of the four ground
states (w =0, 1, 2, 3) is

3

Giay= Y lon) -+ low) (orlow ® (0w, -+ 0a, ) 10). (82)

Again we have re-written the overall phase for simplicity. These four states are orthogonal,
and the normalization is given by

1
Z(3L+3(—1)L), a=0;
(G |G ) = (83)

1
Z(3L — (=", a=1.23.

4.4 FEigenvectors of the Density Matrix

According to Theorem 1, the degenerate ground states (82) are eigenvectors of the density
matrix (78). Let’s apply p; to |G; «) and use orthogonality of the |«) states. Then we obtain

3
1
pLiGe) =27 D o)) Capay (84)

with coefficient

Cajoay = 9, (0100 ® (047 +++04)[0)

’ o
al,.”,aL—l

X (01 ® (0 -0, ) ® (0, ++ 0 )10). (85)
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It can be shown by induction that
3
Y U0y - 0)0N0IU @0y 00 )= AglB)(BI (86)
B=0

with
1
7B 3D, =0;
Ap= (87)

%(3“—(—1#*‘), B=1,2,3.

Therefore the coefficient Cy,..., defined in (85) can be simplified as
3
Caroay = Y Aple}|oa @ IIBYBI @ (04, 00, )] ® (04, ++-00,)I0).  (88)
a;‘:l,ﬁ:()

Straightforward calculation using multiplication rules of Pauli matrices shows that (88) can
be further simplified as

CoqmaL = 3A18a,0<aL|I & (O'DtL,l t Ua1)|0)

3
+ (Ao +241)(1 = 8ap) (8 (O] —i Zew<ﬂ|>1 ® (0u;_, * 0,)|0) (89)
B=1

where €4, g is the totally antisymmetric tensor of three indices with €153 = 1. By realizing
that

3
Sy (Ol =i Y €y p (Bl = (0100, 00 ® 1 = (at]0w ® I, (90)
p=1

we have reached the final form of the coefficient Cy, .., such that
Coyooar, = [3A1800 + (Ao +2A1) (1 = 80,0) ] (2100 ® (0uy_, -+ 04,)|0). 9n
As a result, we plug (91) into (84) and find that

3A184,0+ (Ao +2A1)(1 —b4.0)
3L

PG a) =

3

Xy ) e ) (@rlon ® (0w, 00,)I0). (92)

By comparing with (82), we find that (92) is exactly the statement that |G; ) (¢ =0, 1, 2, 3)
are eigenvectors of the density matrix p, :

pLIG ) = Ay|Gsa), «=0,1,2,3 93)
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with eigenvalues

1 1)L =0
h o 3A1840+ (Ag+2A1)(1 —840) _ Z(1+3(_§) )’ a=0; o4

3 Ha—(=H", a=1,23.

These numbers obtained in (94) are exactly the eigenvalues found in [19, 41] for spin-1, and
are consistent with our explicit expression for eigenvalues (52).

We can also prove explicitly that any other eigenvectors of p; orthogonal to the set
{IG; @)} have zero eigenvalue. Let’s note that a complete basis of the Hilbert space H;, of
the block of spins can be chosen as

{|(¥1>"'|ClL>}, a:17273‘ (95)

The subspace H, with non-zero eigenvalues is panned by {|G; «)}, as we have already
shown. The Hilbert space can be reduced into a direct sum

H,=H, ®H,. (96)

We will show that the subspace Hg orthogonal to H 4 is a subspace of vanishing eigenvalues.
Mathematically, this means that for an arbitrary basis vector |f8;) - - - |8.), we shall have

prUL— Py)lp1)---1BL) =0, o7)

where [ is the identity of Hy and P, is the projector onto H 4:

> > |G; a){(G; a|
L=y 1|on>---|ozL><on|---<ozL|, EZ G alGa)” (98)
o _ o
By taking expressions (78), (98), (93), and realizing that
3 3
= =IxI
; G alG el gmm ®1, (99)

we find the left hand side of (97) being equal to

pLUL—Pa)|Br1)---|BL)
1 3
=30 2 len)l o) Ol ® (0, - 05,). 1 @ (0, +-00,)1I0). (100)

ap-ap=1

We use multiplication rules of Pauli matrices to write the two terms within the commutator
in (100) as

I Q(op,-+-05)=e"PI®og, B=0,1,2,3;

) (101)
[ ®(0y, -+ 0) =Y ®0,, «a=0,1,2,3.
Here ¢!?® and ¢'?@ are two phase factors. Then the commutator is
U ® (0, 0p,). ] ® (0u, - 0u)] = OPT I @ [0, 0,]. (102)
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There are two possibilities: (i) « = B or at least one of the two is equal to zero, then op
and o, commutes; (ii) o # B # 0, then [0, 0] = 2i 2;3/:1 €pay 0y, but we still have (0|7 ®
0,]0) = (0]y) = 0. Therefore, the factor (0|[ ® (op, - --0p,), I ® (0, - - 04,)]1]0) in (100)
is identically zero. So that we have proved (97). Therefore Hy is a subspace with only zero
eigenvalues.

5 A Different Proof of the Theorem on Eigenvectors

It was shown in Sect. 2.4 that the density matrix takes a diagonal form in the basis of zero-
energy ground states of the block Hamiltonian (21). In this section, we show the same result
by taking a different approach. This alternative proof of Theorem 1 does not involve coherent
state representation.

Let’s start with the ground state of the unique Hamiltonian (4) with N = L:

L
N
IVBS) =] (a;b;H _ bja;+1) |vac). (103)

Jj=0

In order to calculate the density matrix p, = Tro . +1[p], where p is defined in (10), we
introduce a useful identity:

(_ 1)S—]+M
J, M| (|s)o1®|s =—|J,—M), 104
0.L+1¢ 1 (Is)o.1 ®18)2.241) e | L (104)
where |J, M)o, 141 is identical to the spin state defined in (120) except for site indices. |s); ;
in (104) is the normalized singlet state with S valence bonds defined as

1 it _pt 1)
Is)i,; = W (al. bj —b; aj) [vac); ® |vac);
(-0 &
D (=D"IS/2,—m); @ 1S/2,m);. (105)

vS+1 m=—S/2

Identity (104) is derived using properties of the singlet state (105) and Clebsch-Gordan
coefficients as follows:

o,L+1{J, MIs)o,1l8)L,L+1
mo+mp =M

= > (. MI[S/2,m0; $/2,mp1)o(S/2 mol41(S/2 mps

mo,mp 41|
S S/2
2 /

-1
\(/S—J)rl Y (D™IS/2, —mi)olS/2,m)y
my=—S5/2

X

-n? &
X Z (=D"ES/2, —mp)L|S/2,mp) 4
S+1 mp=—S5/2
1 mo+mp =M
=T 2 DML MIS/2 me: /2 mi)

mo,mp41
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X |8/2, =mo)11S/2, —mpi1)L. (106)
Here the Clebsch-Gordan coefficient is defined by
(J, M|S/2,mo; S/2,mp 1) =i j(J, M| (1S/2,mo);i ®1S/2,mp41);). (107)
Then using the symmetry property of Clebsch-Gordan coefficients
(J, M|S/2,mo; §/2,mp 1) = (=1)*7(J, =M|S/2, —=m¢; $/2, —mp 1), (108)
and the completeness of the basis {|S/2,mg)o ® |S/2,mp+1)r+1}, we obtain the iden-
tity (104).
With the help of identity (104), we calculate the partial inner product of the VBS state
with the state |J, M)o .41, which is involved in taking trace of boundary spins. The VBS
state |[VBS) is decomposed into the bulk part and edge parts, then making use of (104), we

have

o,.+1{J, M|VBS)

S
=orill, M|1'[( 1] = bjal,) vac)
N
—S'<S+1)'1'[( albler = bjals) ore (s Mis)orls)e.iilvac) s

—(s'>2]'[(ajb;+1 ) ,+1) (=DM T, = M)y g Ivac)s..o—

= (=DS/FM(SH2|VBS, (J, —M)). (109)

We see that the (S + 1) degenerate VBS states [VBS; (J, M)) defined in (24) appear in
the partial inner product (109). As discussed in Sect. 2.3, they form a complete set of zero-
energy ground states of the block Hamiltonian (21). These states are nothing but the edge
states of the subsystem (block).

Now, it is straightforward to evaluate density matrix as

) (J, M|VBS){VBS|J, M)y,
TrO,L+1 [P] — Z 0,L+1 (VBS'VBS> 0,L+1
J.M
= & VBS;(J,—M)Y{VBS;(J,—M 110
= NBSVES) JZA; L(J,=M))(VBS.(J, —M)|. (110)

This expression is identical to (29) as we change dummy index from M to —M. Therefore,
in this approach again we arrive at Theorem 1 that the density matrix is proportional to a pro-
jector onto a subspace spanned by the (S + 1)? ground states of the block Hamiltonian (21).
Normalization (VBS|VBS) is given in Appendix A. States [VBS,(J, M)) are shown to be
mutually orthogonal in Appendix C.
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6 Conclusion

We have studied the density matrix p; of a block of L contiguous bulk spins in the AKLT
model. The unique Hamiltonian for generic spin-§ is given by (4), which has a unique
ground state described by the VBS state (9) in the Schwinger representation. The density
matrix p; (18) of the block is obtained by taking trace (14) of all spin degrees of freedom
outside the block. The structure of the density matrix has been investigated both for finite
and infinite blocks.

For generic spin-S and finite block, two mathematically rigorous results have been es-
tablished as Theorem 1 and Theorem 2. In Theorem 1 we constructed eigenvectors of the
density matrix with non-zero eigenvalues. These eigenvectors |G; J, Q) defined in (23),
or |[VBS.(J, M)) defined in (24) equivalently, are proved to be the (S + 1)> zero-energy
ground states of the block Hamiltonian (21). The corresponding eigenvalues are obtained
in two different forms. Using nonorthogonal basis {|G; J, Q)}, the eigenvalues are given
through Conjecture 1 (38) and the recurrence relation (39); while using orthogonal ba-
sis {|{VBS.(J, M))}, in Theorem 2 an explicit expression (52) for eigenvalues in terms
of Wigner 3 j-symbols is derived. Non-zero eigenvalues A(J) with J =0,1,...,S ((41)
and (52)) depend only on J and are independent of £2 and/or M in defining eigenvectors.
The density matrix (29) is a projector onto the subspace of dimension (S + 1) spanned by
the set of eigenvectors {|G; J, Q)} and/or {|[VBS.(J, M))}.

In the large block limit L — oo, Conjecture 1 (38) is proved and all non-zero eigenvalues
Ao become the same (69). The infinite dimensional density matrix p., (56) is a projector
onto a (S + 1)?-dimensional subspace in which it is proportional to the identity. The von
Neumann entropy S, coincides with the Renyi entropy Sk and is equal to the saturated
value In(S + 1)2. In the limit the Renyi entropy is o independent, which behaves quite
differently from the XY model where the Renyi entropy has an essential singularity as a
function of « (see [23, 24, 39]).

We have also investigated the structure of the density matrix in a special case when spin
S = 1. Both Theorem 1 and Theorem 2 are proved using a different representation (82)
(maximally entangled states) where all four eigenvectors |G, ) are orthogonal. We have
also shown (97) explicitly that any vector orthogonal to the subspace spanned by the set
{|G, @)} has zero eigenvalue.

Based on the main results obtained in this paper, we end our conclusion by making the
following conjecture:

Conjecture 2 The structure of the density matrix as a projector onto a subspace is gen-
eralizable to inhomogeneous AKLT spin chains (spin values at different lattice sites could
be different) and lattices of higher dimensions." In the large block limit, the density matrix
should behave as the identity operator within the subspace. i.e. (7) is valid for arbitrary
large lattices.
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¢ may even be generalizable to certain classes of arbitrary graphs if the limiting sub-graph can be defined
properly.
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Appendix A: Normalization of the VBS State

The VBS state |VBS) (also known to be the ground state of the unique Hamiltonian (4)) de-
fined in (9) is not normalized. Using the coherent state formalism (12) and the completeness
relation (13), we express the norm square as

2 N+1 N
<VBS|VBS)=|:(S:;T1)!] [QSH)] / HdQ ]‘[[1 (1-£; :2,+1)](111)
j=0
where we have used
01a3p57182) = V2S) S5, (112)

Now we expand [% (11— Q iE Q j+1)]s in terms of spherical harmonics as in (32), then integrate

from 2y to 2y.1. We notice by using the orthogonality of spherical harmonics that each
integral contributes a factor of 2% 557 except the last one. For example,

/dfzo[ (11— %2 } = Zw S)ZJ_ (Q)/déoY[m(éo)Y;O(éo)

m=—I

T A 4

The last integral over QN-H contributes simply a factor of 4. Consequently, the norm
square (111) is equal to

@s+nnv

(VBS|VBS):|: S+ :| SIS+ D (114)

Appendix B: Rank of the Set {|G; J, 2)} with Fixed J Value

For notational convenience, we define
uJ+MUJ—M 1//1_ _ (aT)S+m(b%)S—m
VT MT =M Sm= S+ m)IS —m)!

These two variables transform conjugately with respect to one another under SU (2). Xy,
has the following orthogonality relation

(115)

X]ME

A 4
dQ2X5 Xgw = ————8uwmr. 116
f IMAXIM (2.] ¥ 1)' MM ( )
w;m is a spin state creation operator such that
Vi vac) = |S, m). (117)
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The operator A; defined in (22) can be expanded as (see [35])

At _\/(S—l—J—i—l)!(S—J)!J!J!
_ 2J +1
J my+mp=M
<Y Xom Y (S/2miz /2 mal]. MY Yl @l (118)
M=—J mymp,

where (S/2,my; S/2,m;|J, M) are the Clebsch-Gordan coefficients. Note that l/f; 12my and

w; 12.m, are defined in the Hilbert spaces of spins at site 1 and site L, respectively. We realize
that the particular form of the sum over m; and m, in (118) can be identified as a single spin
state creation operator

my+mp=M

Wiy= Y (S/2miS/2mald, M) Yl ® Vi), (119)

my,my,

This operator lI/;M acts on the direct product of two Hilbert spaces of spins at site 1 and site
L. It has the property that

Wl Ivac); ® [vac), = |J, M), ;. (120)

Now we can derive the completeness relation of the set {|G; J, .Q)} using (116), (118)
and (119):
/de; J,2)(G; J, 2|

J

> W)y IVBSL)(VBSL W,y (121)
M=—J

_Am (SHJ+DIS— D!
T @J+ D! 27 +1

The set of states {lP;MIVBS L), M=—J,...,J} are linearly independent. So that the rank
of {|G; J, Q)} with fixed J valge is 2J + 1. With the introduction of degenerate VBS states
[VBS.(J, M)) in (24), |G; J, §2) can be written as a linear superposition:

J
> X;uIVBSL(J. M)). (122)

M=—J

. S+7+DIS — D!
|G;J,9>=\/(+ +DI(S—J)
27 +1

More details can be found in [35].

Appendix C: Orthogonality of Degenerate VBS States
The set of degenerate VBS states {|VBS,(J, M)),J =0,...,S,M =—J, ..., J} introduced

in (24) are mutually orthogonal. To show this, it is convenient to introduce the total spin
operators of the subsystem:

L L L
St=>_dlb;,  Sg=Y bla;, S, => (ala;—bib)/2.  (123)
j=1 j=1

j=1
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First we show that the set of operators {S;,, Sy, S5} commute with the product of valence
bonds, i.e.

L-1
[ m,]_[(ajij ,ms} =0, [ oo [ [@ipl,, —blal, ) } 0. (124

j=1

These commutation relations (124) can be shown in similar ways. Take the commutator with
S;t. first. We re-write the commutator as

[ v H(ajij J“)S}

-1

FF gt S ToENS t gt TS
=) (ajb, —bjay)” -- [tot’(aj ]+1 b}“j+1) I---(ap by —by_ya;)
1

~

.
Il

t~

—1
(@b} —bja})®---[S] + Si,,. (@b}, —blal, )1+ (a] b} —b}_,a})".
1

J

(125)
Then using commutators [a;, a;] =4;; and [b;, b;] = §;;, we find that
[S++S +1,(a b]+1 bT ‘+1) ]
=la; 'b; +a;+1 ,+1,(a b,+1 bT‘“j‘H)S]

=ajlb;. (@jb}, —bjap, )1+ aj,[bj. (@b, — bja;,)°]

=al(—=S)a]  (albl, —blal )" +a}, Sal@bl,, —blal )

=0. (126)
Therefore [S:rm, ]_[]L 11( J ]+1 — bt a]+1) 1 =0. In (126) we have used [b; (a le —

b; TH) 1=—Sa! H(a/ I b'aTH)S ! In a parallel way, we find that the commutator
with Sy also vanishes. Next we consider the commutator with S¢:

A i
|: or H(albﬁ-l j+1)s:|

j=1
L-1
= (@[b] —bja})* - [S:+ 3, (albl,, —bla] )51+ (a]_,b] —b]_,a})°.

=1

! (127)

In the right hand side of (127), the commutator involved also vanishes because
[S3+ 8%, (albl,, —blal, )]
—[a i~ bTb +a1+1 j+1 b;+1b/+l’ (a;b;H - b;“;H)S]

¥
ak[aj’(a] j+1 j ]+1)] bj[b]’(aj Jj+1 b ]+1)]
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+ a;+1[a/‘+lv (a;bjﬂ - b;a;H)S] - b;+1 [Djs1, (a;b;H - bjajJrl)S]
=0. (128)
Substituting (128) into (127), we obtain [S5. [T5—| (a]bl, | — bia],)S1= 0. Now we shall
show that the state |[VBS, (J, M)) is an eigenstate of S{; and the square of the total spin
S = 2(SEiSior + St Sine) + (S&)? with eigenvalues M and J(J + 1), respectively. Using
the commutation relations (124), we can show that

L—-1
S VBSL(J, M)) = [ [(albl,, —bla}, S (S + ST, M)y Llvach, 1y
j=1

J7J+
i | (129)
Sinl VBSL(J, M)) = [ [(ajbl,, —bla}, )°(Si + SP)IJ, M)y plvac)s 1
j=1
Then from the definition of the state [VBS, (J, M)) and the following relations:
SF+SOI M) L =VUTFMTEM+ DI, M=E1), (130)
(Si+SDIJ, M)yL) =M|J, M)y 1,
we obtain
St VBSL(J, M) = /(T FM)(J =M+ D|VBSL(J, M £ 1)),
(131)

Siot VBSL(J, M)) = MIVBS.(J, M))
and hence Stzm|VBSL (J,M))=J(J+1)|VBSL(J, M)). Itis now proved that [VBS (J, M))
is an eigenstate of S&, and S2, with eigenvalues M and J(J + 1), respectively. Therefore
the states with different eigenvalues (J, M) are orthogonal to each other.

Appendix D: Density Matrix and Correlation Functions

The relation between the density matrix and correlation functions was studied in [6, 40, 41].
It was shown in Sect. 2 of [40] that the density matrix contains information of all correlation
functions in the ground state. The original proof was for spin S = 1/2. In this appendix we
shall generalize this result to generic spin-S which is applicable to our AKLT model.

The Hilbert space associated with a spin-S is (25 4 1)-dimensional. Therefore we could
choose a basis of (25 + 1)? linearly independent matrices such that an arbitrary operator
defined in the Hilbert space can be written as a superposition over the basis. Let’s denote
the basis by {Aup; a,b=1,...,25 4 1}, in which each matrix A, is labeled by a pair of
indices a and b with totally (25 + 1)? possible combinations. The matrix element is defined
as

(Aapdt = 8akbpi, k,I=1,...,25+1. (132)
In addition to {A,;}, we introduce an equivalent “conjugate” basis {Ap)} such that

(Aa)ii =B8adpi, @bk, I1=1,...28+1. (133)
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These matrices (132) and (133) are actually matrix representation of operators {|.S, m)(S, m'|;

m,m'=—§, ..., S}. They are normalized such that
Tr(AwpAca) = Z(Aab)kl (A = Z 8a18bk8ciBak = SacOpa- (134)
k.l k.l

Here Tr takes trace at one and the same site. Because of the completeness of {A,;} at each
site, the density matrix of the block can be written as (see (77))

Poiock = Trouside|G)(Gl = Y (®jeblock) Aa;,) coeff{a;b;}, (135)
fajb;}

where |G) denotes the unique ground state, Troyside takes traces of sites outside the block and
coeff{a;b;} denotes the coefficient. Using the normalization property (134), the coefficient
coeff{a;b;} with label j taking values within the block can be expressed as

coeff{asb;y = Y [ Tr(Aas, Ac,a))coeft{c;d;}

{ejd;} jeblock
= Trotock [ (®eblockAa;b;) Pblock]

= Tran [(®eblock Aa,s, ) IG)(GI]

= (G| (®;eblockAab;) |G). (136)

Here Tryock takes traces of sites within the block and Try; takes traces of all lattice sites.
Combing (135) with (136), we have the final form

Phiock = Z (® jetvlockAa;b;) (Gl (®eblock Aajs, ) |G). (137)
fajb;}

This is the expression of the density matrix with entries related to multi-point correlation
functions (G| (® jebloCkAaj bj) |G) in the ground state. All possible combinations {a;b;} are
involved in the summation. Therefore, we have prove for generic spin-S that the density
matrix contains information of all correlation functions.
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